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Poincaré Cycles and Ergodic Behavior
of a Linear Diatomic Ghain
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The ergodic behavior of a linear diatomic chain is shown to be analogous
to that of a linear monatomic chain. Starting with the expressions for the
time-relaxed correlation functions between any two particles in the chain,
we show that the existence of Poincaré cycles is not inconsistent with the
development of an equilibrium state. Also, we show that those dynamical
variables that are ergodic for the linear monoatomic chain remain ergodic
in the diatomic chain. It is shown that the autocorrelation functions for
particles with equal or different masses decay in time as #~/2.

KEY WORDS: Poincaré cycles; ergodic behavior; momentum auto-
correlation functions; diatomic chain.

1. INTRODUCTION

In several recent papers the problems of irreversibility and the existence of
recurrence times for dynamical systems have been examined in great detail
for the case of linear chains®? and for systems of coupled harmonic oscil-
lators in one, two, and three dimensions.® In this paper we wish to extend the
calculations of Mazur and Montroll® to a diatomic linear chain in which
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we have a two-component ordered system consisting of 2N oscillators
coupled in a periodic array. We shall limit ourselves to a discussion of the
different time-dependent correlation functions and to a study of their relation
with the existence of Poincaré cycles for a large number of degrees of freedom
and with the ergodic behavior of some dynamical variables of the system.
This discussion will be carried out in the realm of classical mechanics.
leaving the quantum mechanical treatment for a further discussion.

In Section 1 of this paper we briefly review the dynamics of a linear
diatomic chain. In Section 2 we study the classical statistics of such a system;
in particular, we show how the existence of Poincaré cycles is not inconsistent
with passage of the system to its equilibrium state. Also, we indicate which
are some of the dynamical variables that are ergodic. Finally, in Section 3 a
detailed calculation of the momentum autocorrelation functions will show
that they decay in time as /2,

2. DYNAMICS OF A LINEAR DIATOMIC CHAIN

Consider a linear chain consisting of 2V mass points N of which have a
mass M and N a mass m. We shall assume that M > m and also impose a
periodic boundary condition of the Born~von Kdrmén type. Fixing the
particles with mass m at the even-numbered lattice points 2n, 2n - 2,... and
the particles with mass M at the odd-numbered lattice points 2n — 1,
2n -+ 1,..., the Hamiltonian for the system is given by

N-1 N—1
H=73 (md, +3Ma, )+ 3y 2 [Gyy — %) + Gapy — 950)°]
n=0 n=0

1)
where the ¢’s represent the displacements of the particles from their equili-
brium position and y is the force constant between any two masses. The
imposition of periodic boundary conditions implies that

Jr+eN = Gk )

for any k.

It is convenient for our purposes to express (1) in terms of the normal
coordinates of the system. These coordinates are defined® by the following
relations:

1 X il COS oy Sin o,
— __ aikn [N — - =
VN g’ ( vVm T )
N ©
. sin « COSs o
_— emik(Zntl) [N E + 7 —k
on+1 VN kz=:1 ( & VM N VM )
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where £, and 7, satisfy the reality conditions
X =64, mF=n, Q)
and oy, is defined through the relation
tan 2oy, = [2mM 3} 2/{(M — m)] cos(mk/N) (5)

Substituting Eq. (3) into Eq. (1) and using Eq. (4), we find that in terms
of the normal coordinates §; and 7; the Hamiltonian reads

N »
H=3 &+ 10 2+ @P) | € B+ @) |, ] (©)

Te=1
where
(@) = (y/Mm)[M + m + (M? -+ m?* + 2Mm cos @, ']
7
(@) = (/Mm)[M + m — (M + m* + 2Mm cos ¢, }'"] ¥

and g = 27k/N. Here 0} and ' are the well-known dispersion relations
defining the optical and acoustical branches, respectively.

The equations of motion for the normal modes are easily derived from
Eqg. (6), the result being

£+ (@PY £,=0, i+ (@@ 9, =0 ®)
whose solution is
£,() = £,(0) cos(@®?) + (1/wiP) £,(0) sin(w®r)
7(1) = 7,(0) cos(w®1t) + (1/w®) %,(0) sin(w®t)

It will be vseful for future calculations to express the momentum p;
of any particle at time 7 in terms of the values of the momenta for all particles
at time ¢ = 0 and the normal coordinates &, and 7, also at time ¢t = 0.

From Egs. (3) and (9) we have that

©)

N .
Pat) = Vm Y, C. 0 {[—wPE,(0) sin wt + £,(0) cos wiPt] cos «,,
k=1

+ [—@{®7,(0) sin 0Pt + 7,(0) cos wP¢] sin o} (109)

N .
Pawia®) = VI Y Cp o AwBE,(0) sin 0t — £,(0) cos wPr] sin o,
k=1

+ (—oP1,(0) sin w®t + 4,(0) cos wPt] cos a,} (109
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where
Cuan = (V) 00, Cpayy = (I[VN) ersrersniv (1)

These coefficients satisfy the relations

N N
Z Cf.sz;jzl = Z C5,2k+1cfzz+1 = Skl (12)
j=1 j=1
If we multiply Eq. (3) by C}, and C},,,, , respectively, and sum over the
n’s, we find, with the use of Eq. (12), that

N
N = Z (\/m C;km%n Sil’l Oy _I— \/M C;lf2n+1q2n+1 CcOos ‘xj)
= (13)
N

& = z (\/’—’”_ C:Z'nqzn COs oy — VM C;j‘z.n+1q2n+1 sin o)

n=1

From Egs. (13) we can evaluate %,(0) and £,(0), which are thereafter sub-
stituted back in Eqs. (10) to yield:

p2n(t) = 21 [aa‘ani(O) + binp2i+1(0) + lmf,(O) + hjn"]i(o)]

N (14)
Dania(t) = Z [0 P2541(0) + 550 P2i(0) + fin€s(0) + g5u:(0)]
=1
where
N
ajn = (1/N) 3 e2*=DIN(cos w1t cos? a,, + cos wiPt sin? o)
k=1
(13)
N
bjn = (INYn/ M2 Y e2miktn=i—1/2IN(cos o, sin ,)(cos w@t — cos wlf)
k=1
Ln = —Vm CiapoPcos oysin iV, by = —vVm Cj 0@ sin oy sin Pt
and
N
tin = (1/N) Y, ex =D /N(sin? o cos wPt 4 cos? o, cos w?t)
k=1 (16)

N v
8, = (1/N)(m/M)'2 Y, e2riktn=i-1/2/N(cos o, sin «,)(cos wPt — cos wlt)
k=1
=+/MC,; W iy v i @ =V MC (2) i @
Sfin= Geana@W; SN oy SINw; 'L, gip= ,2n410; COS o SIN w;™ !

Equations (14)—(16) are the analogs of Eq. (14)-and (16) Ref. 3, Section 3.
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3. CLASSICAL STATISTICS OF A DIATOMIC CHAIN

‘We start this section by calculating the time-relaxed correlation function
between two particles of the chain separated by a lattice vector r. It is quite
clear that we shall have three such correlation functions, namely two corre-
sponding to correlations between two particles of equal mass and the joint
correlation function between two particles of different mass.

If we denote by p%(¢) and pi¥(¢) the correlation functions between

particles of masses m and M, respectively, and by p$/(z) the same function
for particles of different mass, then, choosing the proper normalization

factor so that px(f, ¥) — 1 when ¢, r approach zero, we have that

PG, 1) = F0(2, P)Fg0(0, 0) an
and
et 1) = FP(t, r)/[Fm(0, 0) (0, 0)]/2 (17
where
(m, M) __ * *
FN — '2‘E{Ps+r(t)ps (0) + ps(t)ps—!—r(o)} (18)
s being an even- or odd-numbered lattice point,
FY) = 3E{pour() P3osr(0) + Paosr(t) Pera(0)} (18"

and E indicates an average over a microcanonical ensemble.
If we assume that initially there exists equipartition, i.e., that

E{£(0) £(0)) = kTS,  E{iju(0) 700} = kT8
E{£40) nX0)} = E{£,(0) £,40)) = E{n;(0), 7,*(0)} = 0

then substituting Eqs. (10) and (10) into Eqgs. (18) and (18") yields, after some
manipulations, with the aid of Egs. (19), the following results:

19

Fr, 6 = W%% cos 27Vkr (cos wVf cos? o, + cos w®f sin? o)
| (20)
F}VM)("'; t) = M]I\;T Z cos ?.Zkr (cos w{t sin® o + cos wPt cos? o)

k

where in these expressions r is an even multiple of the unit lattice vector since
the unit vector is the distance between two particles with different mass. We
also have

kT kr' .
FP@r', 1) = (Mm)2 5 % cos T (sin o, cos o )(cos wPt — cos wilt)

N
2
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In this expression 7’ is obviously an odd multiple of the unit lattice vector.
It is easy to show that all these expressions reduce to the corresponding F
function for a monatomic lattice with 2N particles when we let the masses of
the two particles coincide.

Finally, substituting these results into Egs. (17) and (17°), we obtain
the desired time-relaxed correlation functions,

p(r, t) = (1/N) Y, [cos(2mkr/N)](cos wVt cos? a, + cos wiPt sin? o)
k

(22)
pM(r, t) = (1/N) Y [cosQ2mkr/N)](cos wMt sin® o, + cos wPt cos? o)
’ (2)
P, 1) = (1/N) Y [cos(mkr'/N)](sin oy, cos a,)(cos wPt — cos wDt)
: 2)

and the autocorrelation functions are just obtained from Egs. (22) and (22"
by setting r = 0.

In the remainder of this section we shall discuss, first, the time behavior
of the autocorrelation functions and its relation to the existence of Poincaré
cycles, and second, how one obtains the ergodic properties for dynamical
quantities following an analysis similar to that given by Mazur and
Montroll.®

Since Eqgs. (22) and (22') have the same structure, it suffices to consider
in detail only one of them. Let then r = 0 in (22), so that

P, 1) = (l/N); (cos? o, cos wVt + sin? o, cos w{Pr) (23)

Here the first summation extends over all the normal mode frequencies of the
optical branch and the second one over all frequencies of the acoustical
branch. Thus, Eq. (23) is simply the sum of two “almost periodic functions”
of the type

N—1

fu(t) = (1/N) Z a; Cos w;t (24)

and to find the average frequency with which any value of f(¢) is achieved, a
slight generalization of Kag’s theorem!®-9 is needed.

Let N,7{h) be the number of zeros of fy(¢) — % in the interval AT, Then
the mean frequency for the achievement of 4 by f(¢) is given by

Ly = Jim [Nar(h)/AT] @5)



Poincaré Cycles and Ergodic Behavior of a Linear Diatomic Chain 249

For almost periodic functions L(%) is equal to the phase average of f over any
interval 47 and as it is shown in Appendix A by an extension of Kag’s
theorem that one finds

L(bn'%) = (wo/may) exp(—b?/ay?) (26)

where
we = (1/n) ¥, afw?  a® = (/) } a? (26
j=1 =1
The conditions under which Eq. (26) is valid are

n n N
Lim (1/n%) } a*—0,  lim (/) } wfa#—0,  Im(1/2%) 3 wa*—>0

el i=1 =1
@7
Since

P = fRO) + fR® (28)

using Eqgs. (25)—(27), we see that the mean frequency for the achievement of a
value & by p{(¢) is given by

LN = (0®/7a®) exp[—(b/a®)2] + (0@ /ma®) exp[—(bjaP)]

(29)
where
N N
(@DY: = (I/N) ¥ (cost a)(wM?,  a = (1/N) ¥, cost o,
i1 i=1
j 3 (30)
N N
(@@ = (1/N) ¥ (inta)@®),  a® = (I/N) Y sint a,
i1 -1
Also, for p§P(r) we obtain
LEN) = (wfymaf®) expl—(c/a®)] + (i3 /maf?) expl—(c/af)]
@D

where ai" and al® are defined in Eq. (30) and

@) = AN 3, Gint )@ (@) = (V) 3 (cost ay)wf2)"

(32)
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On the other hand, one can also find the value for L(%) defined in (25)
when % is near a = ;" a; . This calculation has been done by Slater®-9, the
result being

_ 1 (wg))z ver L0 g piN-Dr2
L) = I'GN + 1) ;[ N cos?a; ] [ 2n ]
(w,(f))z 1/2 a(z) — (N-1)/2
+ [HI,L sin?a, e 33)
and
1 (wg\:}())z ver @ g (N-1) /2
LD = ran 1D %{H;il Sin® a].] ( I )
(ws\gl))z a(l) — & (N-1) /2 ,
+ [ T1¥, cos? o, 27 (33)

for particles with mass m and M, respectively. In this equation a4V and g®
are given by

N N
a® = Y cosoy;  a® =) sin’o
i1 i1

If we compare our results with those obtained in Ref. 3 for the mona-
tomic chain, we see that both for the light and heavy masses the behavior of
pn(t) for each frequency branch is the same as in the monatomic chain when
t — oo, and therefore we may conclude that the existence of an equilibrium
state is not inconsistent with the existence of Poincaré cycles for a diatomic
chain.

As a consequence of the fact that the asymptotic value, with respect to
N, of the transition probability from p,(0) to pi¢) for a linear monatomic
chain has a Gaussian character and the fact that py(f) — 0 when N and ¢
simultaneously tend to infinity, the following results are shown in Ref. 3 to
be true:

(1) The expectation value of kinetic energy approaches the equipartition
value kT when ¢ — oo, while it approaches its initial value at = 0.

(?) p;(?), the momentum of the jth particle at time ¢, is an ergodic
quantity.
3 pA@) is also ergodic.

(4) Any function depending only on p; and whose phase average exists
is ergodic.
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We shall now show that these results also hold for a diatomic chain; to do so
one must prove that Px( pi(t) | p;(0)), the transition probability from p;(0) to
p{#), has an asymptotic Gaussian character with respect to N both for
j=2nand j = 2n+ 1. Also p{"(¢) and py?(r) must approach zero when
N, t — oo, but this is quite obvious since for the monatomic case py(f) is a
sum of cosines which satisfies the property (3) and in our case each term of
the sum is multiplied by a constant a; such that | a; | << 1.

Let us then calculate Py( p2,n(2)] p2n(0)) by assuming that at time ¢ = 0
the particle has momentum p,,(0) while the remaining 4N — 1 variables are
distributed initially according to a microcanonical distribution such that the
total energy of the assembly is £. Then

> (1/2m) p,0) + Z (/M) p3;,,(0) + (@) £20) + (o) 7,(0)] = R
j#En (34)
and from Eq. (14) we can write

Y(t) = Py, (1) — pi" (1) £,,(0)

= Y 4mp5(0) + Z (610 P25:2(0) + Ln€s(0) 4 s (0)]  (35)

j#n

Following the procedure described in Ref. 3 we must find the distribution
function of (35) over the energy ellipsoid defined by Eq. (34). One then finds
that the distribution function of ¥{(¢) when N — oo is given by

F(Y) = [1/oRQ2m/N)'?] exp(— NY?/20%R?)
where

Z 2my}, + 2Mn3, 4 [2/(0P)] I, + RI@PY] 1Y, — 2m(pfPY()

Evaluating o?, and since R? = NkT as N — oo, we finally find that
Pr(03,() | 1, (0)) = 27mkT[1 — (o7 ()]}
X eXp{—[P,,(t) — P5,0) pP(OP2mk Tl — (p'7Y ()]}

(36)

and similarly

Pr(ponia(®) | Pansa(0))
= {2aMET[l — (oG (O]}
X eXP{—[P312(t) — P2 2(0) P (OF/2MET[L — (pI0)2()]}

(36"

which are the desired relations.
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4. CALCULATION OF MOMENTUM CORRELATION
FUNCTIONS

We wish to consider in this final section the dependence in time of the
momentum autocorrelation functions obtained from Egs. (22) and (22)
when r = 0 and N — oo and of the correlation function between two neigh-
boring particles, i.e., when #" = 1 in Eq. (22”) under the same condition for N.
In particular, we shall show that, as in the case of the monatomic chain, the
envelope of all these three functions goes to zero as #1/2 when ¢ — 0.

Since, once more, the details of the calculations are similar in the three
cases, we shall give the details for only one of them and write down the
results for the remaining two.

Let us, then, consider the autocorrelation function for a particle having
a mass m. We have

N—-1

Np(t) = kz;) (cos? o, cos wiPt 4 sin® o, cos wPt) 37

Letting N — o0, we may replace k by a continuous variable, so, using Eqs. (5)
and (7) and writing

op = 2ak/N = 0
we get

pm(@) = I+ I, (39)
where

1 2 M—m
L= Z;fo [1 o (M? + m? -+ 2Mm cos 0)1/2]

1/
X cos 3! (ﬂyn_[) 2 [M + m + (M? + m? 4 2Mm cos O)'72]4/2 df

and

1 p?% M—m
L=z L = (M T i - 2Mm cos 9)1/2]

1/2
x 008 |t (2 )" (M m — (M2 -+ m? -+ 2Mim cos 0212 df
In each one of these integrals we split the interval of integration into two
parts, from 0 to 7 and from = to 2. In the integration over the latter one we
make 0 — @’ - 7, so that each one of these integrals breaks up into two parts.
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For I, we have

4 M—m
4l = fo 1+ (M + w2 - 2Mm cos 0)1/2]

253

(L
x 08 {1 (X} M + - (n + M2 - 2Mim cos 2P| df

Mm

™ f: [1 - (M? + mzﬂi;m”]lw cos 0)1/2]

1
X cos gt (-L) M m o+ (m? + M?* — 2Mm cos 0)1/2]1/2% db

Mm

and we have a similar expression for J, .
In this expression for /; we now make the change of variable

M+ m 4 (M2 + m?® + 2Mm cos 0)12 = (Mm/y) x*
and write

wf = 2yfm; wf =2yM; @ = w® + oy
We thus obtain

@r
L= @) [ 162 — @)/ — o) er? — X2 cos xt dx
and by a similar analysis, one can show that
= @) [ 16" — wf(e — w?)(ws? — ¥ cos xt dx
0

Hence,

Py = @/m) | | P02 — w0 — e — ¥ cos xt dx

or
-+ f [(x® — wd)/(x* — w ) w® — x¥)] cos xt dx
The results for the other two cases are
pM(t) = (2/m) g f [0 — (62 — w)(wr? — )2 cos xt dx
0

+ j% [(x* — w,?)[(x? — w2 w* — xH)]*72 cos xt dx

822(7/3-5

(39)

(40)

(41)

“42)

(43)
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and

pCL, 1) = [ ) | 167 — )t — ) — X2 cos xt d
+ wa [(x* — 0,)(x* — wP)/(w® — xH)]/2 cos xt dx (44)

In Egs. (42)-(44) if we let m — M, noting that from Eq. (39) w; — w,
and wy, — 2(y/M)'? = w,, , we get

2 cos xt dx
PO =), i wpE

which is the well known result for the monatomic case.

The values of these expressions are straightforward but lengthy to
compute. The computation may be done either using some well-known
theorems for asymptotic Fourier integrals? or using methods of the gener-
alized Fourier analysis®. In Appendix B we work out one of them (since the
method is the same for all) but only the results will be given here. These
are the following:

o = () 22 o+ )

wywy
+ - \/w=: cos (th — ——)] + 03/ (45)
2 L
P = () (o) eos (o =)
+— \/j: cos (wpt — —)] + O(t-31) (46)
1. L
pI(L, 1) = ( Zfarit )1/2 D1y oo (wLZ — —%—) +o@=2”)  47)

thus showing that these functions tend to zero as ¢~/ when ¢ — 0. It is also
worthwhile pointing out that if in these equations we let M — m, they all
yield the result for the monatomic chain, namely

plt) = Qe ) cos(ert — tm)
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APPENDIX A

It has been shown by Kag¢®® that the number of zeros of an “almost
periodic function” is given by

L) = §¢] cos(h) | [T (1 ax |
— [Tt 02 ) (AN

Starting from this expression, we want to find the order of magnitude of
L(#) for large values of n, i.e., we want to obtain Eq. (26). To do this, let us
rewrite Eq. (A.1) in the form

k) = (1127 ([ APAIUC, 0) — $U(, 7) — U, —)] dax dy

(A.2)
where
U(e, B) = eiet ﬁ Jolai(e® + fPw;?)] (A.3)
Using for J,(x) the approximation:
Jo(x) & exp(—x*/4)[1 — (x*/64)] (A4

one finds that

U(x, B) = exp [iah — %— ‘; % g ] [ 514 121 at(o? 4 52%2)2]

(A.5)
Substituting (A.5) into (A.2) and introducing the new variables
h = bnl/? ant? = x; natl? =y (A.6)
one gets
1 (1 x 1 x2 2
12y — | % hy —— 2 a2 o 4
L(bn*/2) 2772[!0 5 [P [sz T % ] [1 i j§1 a; ]
2 2
— exp [ibx — % agt — JjT wo‘l]
X {1l — —I— ¥ af(x* 4 2x¥%wf + yio) |t dx dy
64n? =
(A7)

822/7/3-5%*
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where
2 n
= (/) Y a?,  w? = (1/n) )} afw? (A.8)
=1 =1

If we now take the limit as n — oo and assume that the conditions
expressed by Eq. (27) hold true, we get

L(bn'/?) = (2 5 f+°° 1 - exp(*my we?) dyf exp [ibx - (.)zc_ ao)z] dx
(A.9)

The integration of Eq. (A.9) is straightforward, the result being
Lon'?) = (wy/may) exp(—?/ay?)

which is Eq. (26).

APPENDIX B

In this appendix we shall illustrate how one obtains Eqs. (44)-(46) from
their corresponding integral expressions using the methods of Ref. 8. It will
be sufficient to evaluate one expression, for instance, p")(¢). Let us write it
as follows:

pI(@) = [(Mm)' 2wy (L, + 1) (B.1)
where

o 2 (7 Ix® — (0)P][x® — (wy')?] 12
— Rem [ 3 o )2 = g

X H(x) H(w," — x) e2miwt (x
— (oY% — (wy)1] )12
(@) —

% H(x — w,') H(w; — x) 2™ dx

I, — Re(2n)? f: ; [x*

where w;” = w;/27 for i = 1, 2, L and H(x) is Heaviside’s step function.

We now use the following theorem ®: If the generalized function f(x)
has a finite number of singularities and at each one of them f(x) — F,(x) has
absolutely integrable Nth derivative in an interval including the singularity
x; , where F(x) is a linear combination of functions of the type

| x — x; 1% P —ox; [Psgn(x —x); [x—xFlog|x — x;|

[ x — x; [Plog | x — x; | sgn(x — x;)
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and 8)(x — x,) for different values of 8 and p, and if f¥(x) is well behaved at
infinity, then g( y), Fourier transform of f(x), satisfies

g =2G»+0o(y™) a N—ow (B.2)

G,( y) is the Fourier transform of Fy(x).

I, and I, are Fourier transforms of their corresponding integrands so
we may apply the theorem to them. Since we shall only need p'/’(¢) to lowest
order in ¢, it will only be required that at each singularity of the integrands,
which we shall denote by f(x), f(x) — F{x) has absolutely integrable first
derivative. Let us consider I; and write

[ — (o llx* — (g )] )

f(x) - (le)g __ xg H(x) H(wZI - x)

which has singularities at x = 0 and x = w,’. [Notice that at x = w,/,
f(x)=0]

At x =0

Fx) — (oo, /o) Hix) =2 O( x [}
Thus
Fy(x) = (o) wy [w,) H(x)

and

Gy(1) = (w1, [, )2mit)™
which has no real part and hence gives no contribution to p(¢).
At x = w,’ we easily find that
Fy(x) = const X | wy' — x M2 H(w, — x)

which has a Fourier transform proportional to 73/, and we therefore
neglect it.

Similarly, the integrand of I, has two singularities, at x = w;" and
x = wy'. The first one gives terms of the order z-3/2 and higher, so we drop it.
For the second one we have

J@) — [or'wy [Cay )Pl | wp — x [TRH(w, — x) = Olw,” — x [ 17)
and writing
Fx) = [o)/@y|Qoy VPl o) — x [7RH (0 — x)
we find that
G(1) = [w)/ 0, [Qe, Y PYexp[—iQmiw, 't — m)i(20)7 (B.3)
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so that collecting these results and substituting back in Eq. (B.1), we find that

Mm 12 1 wiw,
0= (52 Tan

which is Eq. (47).

cos (w ot — %—) -+ O(t3/2)
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