
Journal of  Statistical Physics, Vol. 7, No. 3, 1973 
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The ergodic behavior of a linear diatomic chain is shown to be analogous 
to that of a linear monatomic chain. Starting with the expressions for the 
time-relaxed correlation functions between any two particles in the chain, 
we show that the existence of Poincar6 cycles is not inconsistent with the 
development of an equilibrium state. Also, we show that those dynamical 
variables that are ergodic for the linear monoatomic chain remain ergodic 
in the diatomic chain. It is shown that the autocorrelation functions for 
particles with equal or different masses decay in time as t-i/2. 

KEY W O R D S :  Poincar~ cycles; ergodic behavior; momentum auto- 
correlation functions; diatomic chain. 

1. I N T R O D U C T I O N  

In  several recent papers the problems of irreversibility and  the existence of  
recurrence times for dynamical  systems have been examined in  great detail 
for the case of  l inear chains ~1,2) and  for systems of  coupled ha rmonic  oscil- 

lators in one, two, and  three dimensions.(3) In  this paper  we wish to extend the 
calculations of  Mazur  and  Mont ro l l  ~3) to a diatomic l inear chain in which 
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we have a two-component ordered system consisting of 2N oscillators 
coupled in a periodic array. We shall limit ourselves to a discussion of the 
different time-dependent correlation functions and to a study of their relation 
with the existence of Poincar6 cycles for a large number of degrees of freedom 
and with the ergodic behavior of some dynamical variables of the system. 
This discussion will be carried out in the realm of classical mechanics. 
leaving the quantum mechanical treatment for a further discussion. 

In Section 1 of  this paper we briefly review the dynamics of a linear 
diatomic chain. In Section 2 we study the classical statistics of such a system; 
in particular, we show how the existence of  Poincar6 cycles is not inconsistent 
with passage of the system to its equilibrium state. Also, we indicate which 
are some of  the dynamical variables that are ergodic. Finally, in Section 3 a 
detailed calculation of the momentum autocorrelation functions will show 
that they decay in time as t -1/~. 

2. D Y N A M I C S  O F  A L I N E A R  D I A T O M I C  C H A I N  

Consider a linear chain consisting of 2N mass points N of which have a 
mass M and N a mass m. We shall assume that M > m and also impose a 
periodic boundary condition of the Born-yon K~irm~n type. Fixing the 
particles with mass m at the even-numbered lattice points 2n, 2n + 2,..  and 
the particles with mass M at the odd-numbered lattice points 2 n -  1, 
2n + 1,..., the Hamiltonian for the system is given by 

N--1 N--I 
1 "2 I "2 H = ~ (emqz. + ~M4z.+l) -+- �89 ~ [(q2.+z -- q2n) z + (q~.-z - qz.) 21 

~ 0  n ~ 0  

(1) 
where the q's represent the displacements of the particles from their equili- 
brium position and ~, is the force constant between any two masses. The 
imposition of  periodic boundary conditions implies that 

q~+2N = q~ (2) 

for any k. 
It is convenient for our purposes to express (1) in terms of the normal 

coordinates of the system. These coordinates are defined (4) by the following 
relations: 

( c o s ~  sinc~k~ __ 1 e27rikn/N ~ - - - -  @ "qle 

1 ~v cos c~ 
(3) 
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where s% and ~/~ satisfy the reality conditions 

~:~* = s%~, ~ *  = ~-~ 

and ~ is defined through the relation 

(4) 

tan 2 ~  ---- [2(mM)~/~/(M -- m)] cos(rrk/N) (5) 

Substituting Eq. (3) into Eq. (1) and using Eq. (4), we find that in terms 
of the normal coordinates r and ~/~ the Hamiltonian reads 

where 

N 

H ~] �89 (,~ I ~ + I'4,~ [~ + '~)~' 1~ ( o~)~ (6) 

(o~(kl))~ = ( y / M m ) [ M  4- m + ( M  2 + m 2 4- 2 M m  cos q~k) l/z] 

(7) 
(3) ~ -- ( M  s + m ~ + 2 M m  cos q~)1/2] (c% ) = ( y / m m ) [ m  + m 

and ~ = 2~rk/N. Here ~o~ ~) and w(~ 2) are the well-known dispersion relations 
defining the optical and acoustical branches, respectively. 

The equations of motion for the normal modes are easily derived from 
Eq. (6), the result being 

( % )  ~ 0, # ~+  (~)* = 0  (8) 

whose solution is 

~k(t) = ~k(0) cos(~o(~)t) + (1/oJ(kl)) ~k(0) sin(co(k~'t) 
(9) 

~Tk(t) = %(0) cos(~o(kz)t ) 4- (1/% (2)) ~(0)  sin(o~(k2)t ) 

It will be useful for future calculations to express the momentum Ps 
of  any particle at time t in terms of the values of the momenta for all particles 
at time t = 0 and the normal coordinates ~ and ~Tk also at time t = 0. 

From Eqs. (3) and (9) we have that 

N 

P2,(t) = ~/m- Z Ck,~n{[--~ sin ~o(~)t + ~(0) cos o~(~)t] cos ~ 
k = l  

4- [--o~(~hl~(0) sin ~o(~z)t 4- ~}~(0) cos o~(~)t] sin %} (10) 

N 

p2~,+l(t) ~- V M -  Z Ck,2,+l{[w(~l)SCk(0) sin ~o(kl)t -- ~k(0) cos ~o())t] sin a k 
k = l  

+ (--w(k2)~k(0) sin w(k~)t + ~)k(0) cos co(k2)t] cos %} (10') 
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where 

C~,z.+~ = ( l IveN -) e "~(2~+~)IN (11) 

These coefficients satisfy the relations 

N N 

G,~G,2~ ~ = ~ (12) 
~=1 ~=1 

If  we multiply Eq. (3) by C* and C* respectively, and sum over the J ,2n  ~ , 2 n + l  , 

n's, we find, with the use of  Eq. (12), that 

N 

~7~ ~ (~/ -~  C*z.qz~ sin ~ + v / M  * = C~,~+~q~+~ cos ~ ~) 
(13) 

N 

= E c o s  - s i n  
~ = 1  

From Eqs. (i3) we can evaluate ~)~(0) and ~(0), which are thereafter sub- 
stituted back in Eqs. (10) to yield: 

N 

p2.(t) -- ~ [as,~p2j(0) q- bj.p~+~(O) + lj.~j(O) -~ hs~Ts(0)l 
~=1 

N 

p~.+z(t) = ~ [r~..p~+~(0) + s~.p2~(O) + f~.~(0) + g~.~Tj(0)] 
~=1 

(14) 

where 
N 

aj,, = ( l /N) ~ e2=ik('~-J)/N(COS o)~l)t COS z % q- COS oJ~2)t sin 2 %) 
k=z (15) 

N 

bin = (1 /N) (m/M)  1/2 ~, e2~k(~-~-l/~/N(COS ~ sin %)(cos o)~2)t -- cos co~l)t) 
/c=l  

= " / m  C co(2) sin ~j sin ~o~)t l j . = - - v / m - G , 2 . o ~ l ) c o s ~ s i n @ l ) t ,  hi. - - v  J,2.~ j 

and 
N 

rj .  = ( l /N) ~ e2~i~"-J)/X(sin z c~ k cos oJ~*)t q- cos 2 %~ cos r 
~=z (16) 

N 

sj .  : ( l / U ) ( m / M )  x/2 ~ e~C"-~-Z/2)/N(COS % sin %)(cos ~o~2)t --  cos ~ l ) t )  
k = l  

f t .  = V/~r G.2.+xc@ ) sin ~ sin c@l)t, gj .  : -- V/~r  Cj,z.+~co} z) cos a~ sin coJ2) t 

Equations (14)-(16) are the analogs of Eq. (14)-and (16) Ref. 3, Section 3. 
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3. CLASSICAL STATISTICS OF A D I A T O H I C  C H A I N  

We start this section by calculating the time-relaxed correlation function 
between two particles of the chain separated by a lattice vector r. It is quite 
clear that we shall have three such correlation functions, namely two corre- 
sponding to correlations between two particles of equal mass and the joint 
correlation function between two particles of different mass. 

If  we denote by p~)(t) and p ~ ( t )  the correlation functions between 
particles of masses m and M, respectively, and by p~)(t) the same function 
for particles of different mass, then, choosing the proper normalization 
factor so that pN(t, r) -+ 1 when t, r approach zero, we have that 

and 

where: 

p~'M'(t, r) = F~' i ) ( t ,  r)/Fr O) 

p(~)(t, r) = F~)(t, r)/[F(N~)(O, O)F(MM)(O, 0)11/2 

(17) 

(17') 

F(N "~'M) = �89 + ps(t)p*+~,(O)} (18) 

s being an even- or odd-numbered lattice point, 

FN(J) = �89 p's+,.(0) § P2~+r(t) p*~+l(0)} (18') 

and E indicates an average over a microcanonical ensemble. 
If  we assume that initially there exists equipartition, i.e., that 

E{~(0) ~(0)) = ~ ,  E{~(0) ~(0)} = k T ~  
(19) 

E{~(o) ~*(o)} = E{~(0) Z~*(0)) = E{~(0), ~*(0)} = 0 

then substituting Eqs. (10) and Off) into Eqs. (18) and (18') yields, after some 
manipulations, with the aid of Eqs. (19), the following results: 

F~'~)(r, t) m k T v  2rckr 
- -  ~ - ~  cos ~ (cos oJ~)t cos 2 % + cos oJ~2)t sin 2 %) 

(20) 
F~M)(r, t) -- M k T  2~rkr N ~ cos ~ -  tcos ~@)t sin 2 % + cos co~2)t cos 2 %) 

k 

where in these expressions r is an even multiple of the unit lattice vector since 
the unit vector is the distance between two particles with different mass. We 
also have 

1 2 k T  =kr' F~)(r', t) = (Mm) / -~-  ~ (sin % COS - ~ -  COS c~,~)(COS co~?)t -- COS w~l)t) 

(21) 
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In this expression r '  is obviously an odd multiple of the unit lattice vector. 
It is easy to show that all these expressions reduce to the corresponding F 
function for a monatomic lattice with 2N particles when we let the masses of 
the two particles coincide. 

Finally, substituting these results into Eqs. (17) and (17'), we obtain 
the desired time-relaxed correlation functions, 

p~)(r, t) = (l/N) ~ [cos(27rkr/N)](cos c@'t cos s % + cos ~o(~2)t sin 2 %) 
7~ 

(22) 

p~t'(r, t) = (l/N) ~ [cos(2rrkr/N)](cos c@)t sin s % + cos ~ol~)t cos s %) 
/e 

(22 ') 

p(S)(r' t) = (l/N) ~ [cos(r&r'/N)l(sin % cos %)(cos w~?)t -- cos ~@)t) 
N \ - ~  

k 

(22") 

and the autocorrelation functions are just obtained from Eqs. (22) and (22') 
by setting r = 0. 

In the remainder of this section we shall discuss, first, the time behavior 
of the autocorrelation functions and its relation to the existence of Poincar6 
cycles, and second, how one obtains the ergodic properties for dynamical 
quantities following an analysis similar to that given by Mazur and 
Montroll.(a) 

Since Eqs. (22) and (22') have the same structure, it suffices to consider 
in detail only one of them. Let then r = 0 in (22), so that 

p(n~)(0, t) = ( l / N )  ~ (cos s % cos c@)t + sin s % cos co(2)t)~ (23) 
/e 

Here the first summation extends over all the normal mode frequencies of the 
optical branch and the second one over all frequencies of the acoustical 
branch. Thus, Eq. (23) is simply the sum of two "almost periodic functions" 
of the type 

N--1 

fN(t) = (1/N) ~ a~ cos o~t (24) 
j = 0  

and to find the average frequency with which any value offN(t) is achieved, a 
slight generalization of Kag's theorem (3"5) is needed. 

Let N~r(h) be the number of zeros offN(t) -- h in the interval A T. Then 
the mean frequency for the achievement of h byfN(t) is given by 

L(h) = 1 %  [N~(h)/A TI (25) 
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For almost periodic functions L(h) is equal to the phase average of f over any 
interval A T (5) and as it is shown in Appendix A by an extension of  Kay's 
theorem that one finds 

L(bnl/2) = (OJofirao) exp(--b2/ao 2) (26) 

where 

w02 = (l/n) i a,Zm~2; ao ~ = (I/n) ~ a ,  2 (26') 
j = l  j = l  

The conditions under which Eq. (26) is valid are 

lira (1/n 2) aj~t ---~ 0, lira (1/n 2) %-2a~-4--+ 0, lim (1/n 2) ~ %-4aj4--~ 0 
/t~ct3 I~C0 n--)~ 

j ~ l  j=:l.  j = 1  

(27) 

Since 

p~'~'(t) = f~ ) ( t )  + f~ ) ( t )  (28) 

using Eqs. (25)-(27), we see that the mean frequency for the achievement of  a 
value h by p~)( t )  is given by 

L(bN1/2) w (D 7r (17 --  ( c o  Izra o ) exp[--(bla(o2)) ~1 ( ~ I a o ) exp[- - (b l@))  ~] -t- (2) 12) 

where 
N N 

(~o~') 2 = ( l /N) ~ (cos ~ c~j)(~@') z, a(oD = (l /N) Z c~ c~j 
j ~ l  J = l  

N N 

(w(~') 2 = ( l /N) Z (sin' %)(w~.2)) 2, a~ ~) = ( l /N) ~ sin 4 aj 
j = l  j = l  

(29) 

(30) 

Also, for p~) ( t )  we obtain 

L(cNz/~) = ',~M """O'"(~)l~'(z"b, exp[--(c/a(o2))2] -~ (w~)/Tra(o~)) exp[--(c/a(ol))2] 

where a~o z) and a(0 ~) are defined in Eq. (30) and 

(31) 

N 

(oo~)) ~ = (l /N) Z ( sin4 0~j)(o)~l)) 2; 
j = l  

N 

j = l  

(32) 
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On the other hand, one can also find the value for L(h) defined in (25) 
when h is near a = ~ "  a~. This calculation has been done by Slater (5.6), the 
result being 

L(h) = F(�89 -}- �89 . I-If=l cos2 c~j 27r 

+ k \ 
(33) 

and 

i t[ (w~)2 ]1/2[ a(2) h ),N-z)/. 
L(h) = I'(�89 -1- �89 ( [l-If~_l s ~  ~ j  ~ -2-~ " 

(o4)) a(,,_ I 
+[I - I~V=lcos"%] ( 2~r (33') 

for particles with mass m and M, respectively. In this equation a m and a (2) 
are given by 

N N 

a tl) = ~ cos 2 c~; a (z) = ~ sin" a s 
~=1 j = l  

If  we compare our results with those obtained in Ref. 3 for the mona- 
tomic chain, we see that both for the light and heavy masses the behavior of 
ON(t) for each frequency branch is the same as in the monatomic chain when 
t - -  0% and therefore we may conclude that the existence of an equilibrium 
state is not inconsistent with the existence of Poincar6 cycles for a diatomie 
chain. 

As a consequence of  the fact that the asymptotic value, with respect to 
N, of the transition probability from pj(0) to p~(t) for a linear monatomic 
chain has a Gaussian character and the fact that ON(t) --~ 0 when N and t 
simultaneously tend to infinity, the following results are shown in Ref. 3 to 
be true: 

(1) The expectation value of kinetic energy approaches the equipartition 
value kTwhen  t ~ 0% while it approaches its initial value at t = 0. 

(2) pj(t), the momentum of the j th  particle at time t, is an ergodic 

quantity. 

(3) pj2(t) is also ergodic. 

(4) Any function depending only on pj and whose phase average exists 
is ergodic. 
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We shall now show that  these results also hold for  a diatomic chain; to do so 
one must  prove that  PN(p~(t) [ pj(0)), the transition probabil i ty f rom pj(0) to 
pj(t), has an asymptotic Gaussian character  with respect to N both  for  
j = 2n and j = 2n + 1. Also p~m)(t) and p~t)(t) must approach zero when 
N, t --7 0% but this is quite obvious since for  the mona tomic  case pN(t) is a 
sum of  cosines which satisfies the proper ty  (3) and in our  case each term of  
the sum is multiplied by a constant  a~- such that  [ a t ] < 1. 

Let  us then calculate PN(p2~(t)] p2,(0)) by assuming that  at t ime t = 0 
the particle has momen tum p2,(0) while the remaining 4N  - -  1 variables are 
distributed initially according to a microcanonical  distribution such that  the 
total ,energy of  the assembly is E. Then  

j # n  j 

(34) 
and from Eq. (14) we can write 

Y(t) = p~n(t) - -  p~)(t)p2~(O ) 

= ~ a~.p2j(O) + ~. [b~-np2j'+l(O) + lj.~(O) + hj.~Tj(O)] (35) 
j # n  

Following the procedure  described in Ref. 3 we must  find the distribution 
funct ion o f  (35) over the energy ellipsoid defined by Eq. (34). One then finds 
that  t]ae distribution funct ion o f  Y(t) when N--+ ~ is given by 

F(IO = [1/crR(27r/N) ~/2] exp(--NY2/2~r~R ~) 

where 

= /(oA~q~l h 2 _ 2m(g(ff})~(t) c'z Z {2my~,~ + 2M~7~ k + [2/(~o(~*') 21 12 + [2 x . .  jlc j~ 
/r 

Evaluating a 2, and since R 2 = N k T  as N -+ oo, we finally find that  

en(p2~(t) [ p=~(O)) = {27rmkZ[1 --  (p~m))2(t)]} 

• exp{--  [pz.(t)  - -  p~.(0) p~n(t)]~/2mkT[1 --  (p(n~))z(t)]} 

(36) 

and similarly 

Pu(p~.+~(t) I p2.+z(O)) 

= {2 M 7 [1 - -  

• exp{-- [p2,~+z(t) - -  p~.n+i(0) p~)(t)]2/2MkT[1 --  (p(nu))2(t)]} 
(36') 

which are the desired relations. 
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4. C A L C U L A T I O N  OF M O M E N T U M  C O R R E L A T I O N  
F U N C T I O N S  

We wish to consider in this final section the dependence in t ime o f  the 
m o m e n t u m  autocorre la t ion  functions obta ined f rom Eqs. (22) and  (22') 
when r = 0 and N --+ oo and of  the correlat ion funct ion between two neigh- 
bor ing particles, i.e., when r '  = 1 in Eq. (22") under  the same condit ion for  N. 
In  part icular ,  we shall show that,  as in the case o f  the m o n a t o m i c  chain, the 
envelope of  all these three funct ions goes to zero as t - l l  2 when t ~ oo. 

Since, once more,  the details o f  the calculations are similar in the three 
cases, we shall give the details for  only one of  them and write down the 
results for  the remaining two. 

Let  us, then, consider the autocorre la t ion funct ion for  a particle having 
a mass m. We  have 

N--1 

NP~ ' ( t )  = Z ( c~ c% cos ~o~l)t + sin 2 ~k cos ~o~2)t) (37) 
k=0 

Lett ing N ~ 0% we m a y  replace k by a cont inuous variable,  so, using Eqs. (5) 
and (7) and writing 

we get 

where 

qo~ ~ 27rk/N = 0 

p(")(t) = /1  + /2  (38) 

1 (2~[1 + M - - m  ] 
Iz = ~ 20 ( M  2 + m ~ + 2Mm cos  O) 1/2 

X cos t \M--m-m ! [M + m + ( M  2 + m 2 + 2 M m  cos 0):/~]1/~ dO 

and 

1 [2~[1 - M - - m  ] & 
- ~  J0 ( M  2 + m ~  - 23/lrn cos 0)1/2J 

• cos t t ~ ]  [M + m --  ( M  2 + m ~ + 2 M m  cos 0)1/2] 1/2 dO 

In  each one of  these integrals we split the interval o f  integrat ion into two 
parts ,  f rom 0 to rr and f rom 7r to 2~'. In  the integrat ion over  the latter one we 
make  0 ~ O' +- ~-, so that  each one of  these integrals breaks up into two parts.  
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F o r  J~ we have  

47rI1 = 1 q- ( M  2 § m2 _~ 2 M m  cos 0)z/2 

• cos t t -M-m-! [ M  § m -t- (m S + M s + 2 M m  cos 0)l/~]z/2 dO 

-k 1 -k ( M  s - k m  s - -  2 r a m  cos 0)z/2 

1[ y ~1/2 I • cos t \-M----m! [ M  + m q- (m z q- M 2 - -  2 M m  cos 0)1/z]1/2 dO 

a n d  we have  a s imi lar  express ion  for  I2 .  

I n  this express ion  f o r / 1  we n o w  m a k e  the  change  o f  va r iab le  

M -k m q- ( M  2 + m s ~ 2 M m  cos 0)1/3 = ( M m / y )  x 2 

a n d  wri te  

~olz = 2y /m;  % 2  = 2 y / M ;  coz z = o~1 ~ + ~o2 2 (39) 

W e  thus  o b t a i n  

S2 11 = (2/7r) [(x 2 - -  %2)/(x2 - -  oJ12)(coL 2 - -  x2)] 1/~ cos x t  dx  (40) 

a n d  by  a s imi la r  analysis ,  one  can  show tha t  

/2 = (2/~r) [(x 2 - -  co22)/(x 2 - -  oJl2)(wL 2 - -  x~)11/2 cos x t  dx  (41) 

Hence, 

If? p ( m ) ( / )  = (2/'/3") [ (X  2 - -  (..O22)/(X 2 - -  O)12)(OJL g - -  X2)]  1/2 COS x t  d x  

q- [(x 2 - -  a~2")/(x 2 - -  col2)(wr. ~ - -  x2)] cos x t  dx  t (42) 
o) 1 

The  resul ts  for  the  o the r  two cases are  

ll/ p(MJ(t) = (2/7"/') [ (X  2 - -  (.O12)/(X2 - -  LO22)(OAL 2 - -  X2)]  1/2 COS Xt dx  

+ f ~ [(x 2 -  o)zz)/(xZ--  o)22)(wL 2 -  x2)]1/~" cos x t  dx  I (43) 
%1 

8a2/713-5 
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and 

p(s)(1, t) = [(Mrn)ll~lrwl [ ( x  2 - -  r  2 - -  CO22)/(COL 2 - -  X2)]  1/2 COS Xt dx 

-t- f~[  [(x 2 - -  cot~)(x 2 --  coL2)l(coL 2 --  x~)] t/2 cos xt  dx I (44) 

In Eqs. (42)-(44) if we let m --> M, noting that from Eq. (39) cot --~ cog 
and col --> 2(y/M) t/2 = corn, we get 

2 ( ~  c o s x t d x  
p(t) ~- 7r Jo [cora 2 - -  X2] t/2 

which is the well known result for the monatomic case. 
The values of  these expressions are straightforward but lengthy to 

compute. The computation may be done either using some well-known 
theorems for asymptotic Fourier integrals (7) or using methods of the gener- 
alized Fourier analysis (s). In Appendix B we work out one of  them (since the 
method is the same for all) but only the results will be given here. These 
are the following: 

( 21t/2[( cot2 -- CO22.)1/2C0S (COlt _~ _4_ ) 
p(~)(t) = \ ~ 1  L\' cotco2 2 

+ cos c o z t -  -t- O(t -3/2) (45) 
032 "~/CO L 

4) D(M)(t) = \ ' ~ 1  L \  o~12co2 

w ~  ( c o d - - 4 ) ]  ~- O(t -3/~) (46) + o,t CcoL cos 

p(S)(1, t) = ( M m  ,|1/~ 601032 

I 2~coLt / 7 
77" 

cos (coLt -- -~--) + O(t -~/2) (47) 

thus showing that these functions tend to zero as t-:/2 when t --~ oe. I t  is also 
worthwhile pointing out that if in these equations we let M --~ m, they all 
yield the result for the monatomic chain, namely 

p(t) = (2/rccoLt) a/2 cos(wLt - -  ~Tr) 
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A P P E N D I X  A 

It has been shown by Ka9 (3,5) that the number of zeros of an "almost 
periodic function" is given by 

1 +f; 1 cos(he 0 l f i  Jo(' ak[c0 L(h)  = ~ 
--cO k = l  

k = l  ) 

Starting from this expression, we want to find the order of magnitude of 
L(h)  for large values of n, i.e., we want to obtain Eq. (26). To do this, let us 
rewrite Eq. (A.I) in the form 

+oo 

L(h) = (1/2=~) f f  (Ve) tv(~ ,  o) - }V(.,  ~) - ~v(~, -~ ) ]  ~ @ 

where 
(A.2) 

U(c~, fl) -~ e i*t~ f i  Y0[aj(e~2 + fi2o)j2)] (A.3) 
.4=1 

Using for Jo(x) the approximation: 

Jo(x) ~ exp(--x~/4)[1 -- (x4/64)1 (A.4) 

one finds that 

j= l  :i=l j= l  

(A.5) 
Substituting (A.5) into (A.2) and introducing the new variables 

h = bnl/2; 

one gets 

I f i l l  [ x2 ] [  L(bn 1/2) = ~ _ _ ~  exp i b x - -  ~ - a o  ~ 1 - - - - - -  

-- exp [ibx --  x2 y2 ol ~- ao ~ - -  ~ -  ~ o q  

• [ 1 64n21~aj4(x4+2xay2~176 

c~n 1/~ = x; ~ln ~/2 = y (A.6) 

lx2~ ] 
64 n 2 aj4 

j = t  

(A.7) 

8~z/7]3-5" 
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.~n 

j ~ l  j = l  

If  we now take the limit as n--~ oo and assume that the conditions 
expressed by Eq. (27) hold true, we get 

1 +m L(bnl/2) _ (2~rg) f+fl-_ exp(--~y2~oo 2 ) y ~  dy f_~ exp [ibx _ (~x ao) ] 

(A.9) 

The integration of Eq. (A.9) is straightforward, the result being 

L(bn 1/~) == (c%/~rao) exp(--b2/ao ~) 

which is Eq. (26). 

A P P E N D I X  B 

In this appendix we shall illustrate how one obtains Eqs. (44)-(46) from 
their corresponding integral expressions using the methods of Ref. 8. It will 
be sufficient to evaluate one expression, for instance, p(s)(t). Let us write it 
as follows: 

p(S)(t) = [(Mm)l/2firy](I1 + I2) (B.I) 

where 

/1 = Re(2z@ f _ ~ '  _ t - [ x 2 -  
( ~ l ' ) ~ ] [ x  ~ - ( ,-%')~1 

( ~ o L ' )  ~ - x 2 t 

• H(x) H(co 2' -- x) e 2~i~ dx 

/.2 = Re(21r) 2 f + ~ l  [ x ~ -  (~ (c~ f 1/2 
_ ( o ~ ; ) 2  _ x 2 

• H ( x  - "1')  H ( o ~ '  - -  x )  e 2~i~ d x  

where coi' = wd2~r for i = 1, 2, L and H(x) is Heaviside's step function. 
We now use the following theorem r If  the generalized function f ( x )  

has a finite number of singularities and at each one of themf(x)  -- F~(x) has 
absolutely integrable Nth derivative in an interval including the singularity 
xr where Fi(x) is a linear combination of functions of the type 

[x -- x~ IB; I x - -  xi 1~ sgn(x -- x0; [ x -- xi I ~log L x -- xi 1 

i x -- xi I ~Iog I x -- x~ [ sgn(x -- xi) 
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and 6(~)(x --  x0  for  different values o f f l  andp ,  and i f f U ( x )  is well behaved at 
infinity, then g (y ) ,  Four ier  t ransform o f f ( x ) ,  satisfies 

g(y) - ~ G~(y) + o(l y [-~) as N ~  oo (B2) 
i 

Gi(y)  is the Fourier  t ransform of  F~(x).  
/1 and Is are Four ier  t ransforms of  their corresponding integrands so 

we may apply the theorem to them. Since we shall only need pU)( t )  to lowest 
order  in t, it will only be required that  at each singularity of  the integrands, 
which we shall denote by f ( x ) ,  f ( x )  - - F ~ ( x )  has absolutely integrable first 
derivative. Let  us cons ider /1  and write 

f ( x )  : I [ x 2 -  (c~ (002')~] 11/~ (coL,)~ _ x2 H ( x )  H(coe' - -  x )  

which has singularities at x = 0 and x = w~'. [Notice that  at x = coL', 
f ( x )  - -  0.] 

At  x --- 0 

f (x) - (0ol'0o~'/0oL') g ( x )  ~ O(I x I ~) 

and 

Thus 

g~(x) = (0o110o~'/0o~ ') H(x) 

G l ( t  ) ~ -  (w~'w21/0og')(2~ri t )  -~ 

which has no real par t  and hence gives no contr ibut ion to O(s)(t). 

At x = co2' we easily find that  

F2(x)  = const • Ioo 2' - -  x I1/~H(0o2 ' - -  x )  

which has a Four ier  t ransform propor t ional  to t-~/2, and we therefore 
neglect it. 

Similarly, the integrand o f  Is has two singularities, at x = wz' and 
x = w~'. The first one gives terms o f  the order  t-3/2 and higher, so we drop it. 
Fo r  the second one we have 

f ( x )  --  [0ox'0o.//(20o/j)z/2] I 0oL' - -  x I-I/~H(0oL ' - -  x )  = O(T0oL' - -  x l ~/2) 

and writing 

F ( x )  -~- [ 0 o 1 ' c o 2 ' / ( 2 c o f f ) 1 / 2 ] [  co L' - -  x [-1/2H(0o L' - -  x )  

we find that  

r , , 1 / 2  �9 �9 i G(I )  = [col ~o2 / ( 2 w L  ) ]{exp[--r(2~rz0oL t - -  �88 -1/2 (B.3) 
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so that  collecting these results and substituting back in Eq. (B.1), we find that  

\-2~-~1( Mm ]1/2 71 (t~ 1/2~~176 e (~oLt 7r p(J)(t) = cos ~--1 ] + O(t-z/~) 

which is Eq. (47). 
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